
N O V A S - C

Naval Observatory Vector Astrometry Subroutines
C Language Version

W. T. Harris
J. A. Bangert

U. S. Naval Observatory

Based on algorithms and Fortran version by:
G. H. Kaplan

U. S. Naval Observatory

First Fortran version: 20 Oct 1988
Revised: 15 Mar 1990

C Version: 7 June 1996

NOVAS-C
Naval Observatory Vector Astrometry Subroutines

C Language Version

William T. Harris
John A. Bangert

U. S. Naval Observatory

Based on the algorithms and Fortran version by:
George H. Kaplan

U. S. Naval Observatory

1. Introduction

The first version of NOVAS, the Naval Observatory Vector Astrometry Subroutines, was released in
1988. It was followed by a revised version, still the current version, in 1990. NOVAS is provided in the
form of Fortran source code. The Fortran package has proven to be very popular, but over the years, there
have been numerous requests for a C-language version. In the early 1990s, members of the U.S. Naval
Observatory/Naval Research Laboratory Optical Interferometer group converted parts of NOVAS to C for
use in their project. Their work was returned to the Naval Observatory’s Astronomical Applications
Department for further development. The result is a package of C-language source code called NOVAS-C.

Like its Fortran counterpart, NOVAS-C is an integrated package of modules for the computation of a
wide variety of common astrometric quantities and transformations. The modules are all coded in ANSI-
standard C. The package can provide, in one function call, the instantaneous coordinates (apparent,
topocentric, or astrometric place) of any star or planet. At a lower level, NOVAS-C also provides general
astrometric utility transformations, such as those for precession, nutation, aberration, parallax, and the
gravitational deflection of light. The computations are precise to better than one milliarcsecond. The
NOVAS-C package is an easy-to-use facility which can be incorporated into data reduction programs,
telescope control systems, and simulations. The NOVAS-C algorithms are, in fact, virtually identical to
those now used in the production of the Astronomical Almanac.

The algorithms used by the NOVAS-C functions are based on a vector and matrix formulation which is
rigorous, consistent with recent IAU resolutions, and does not use spherical trigonometry or form “day
numbers” at any point. Objects within and outside the solar system are treated similarly and the position
vectors formed and operated on by these routines place each relevant object at its actual distance (in AU)
from the solar system barycenter. Objects at unknown distance (parallax zero or undetermined) are placed
on the “celestial sphere” herein defined to be at a radius of 10 megaparsecs (2.06 × 1012 AU). A
description of the algorithms used, along with definitions of terms and related information, can be found in
Kaplan, et al. (1989) Astron. J. 97, 1197.

Since the algorithms used in the NOVAS-C functions are consistent with the IAU J2000.0 system, any
reference data which the functions require as input, such as a star’s catalog mean place and proper motion,
must be expressed in this system. A large body of reference data now exists within the IAU J2000.0
system, including the FK5 star catalog, the JPL planetary ephemerides, the ACRS (a replacement for the
SAO star catalog), and an ever-expanding set of catalogs of radio sources and other objects.

Three levels of functions are involved: basic, utility, and supervisory. Basic-level functions supply the
values of fundamental variables, such as the nutation angles and the heliocentric positions of solar system
bodies, for specific epochs. Utility-level functions perform transformations corresponding to precession,
nutation, aberration, etc. Supervisory-level functions call the basic and utility functions in the proper order
to compute apparent, topocentric, or astrometric places of stars or solar system bodies for specific dates and
times. If desired, the user can interact exclusively with the supervisory-level routines and not become

concerned with the details of the geometry or physical models involved in the computation.

The NOVAS-C source code contains sufficient internal documentation to make the usage clear.
Expanded explanations of a few of the most frequently-called functions are given elsewhere in this
document. In the Fortran version of NOVAS, some of the basic- and utility-level subroutines are provided
in several versions to accommodate users with a need for alternative algorithms. The C version differs from
the Fortran version in this regard: only the “standard” version of each algorithm is provided. However,
two versions of the software that provides basic lunar and planetary ephemeris data are included.

The next section of this document (Section 2) provides an overview of the files that constitute NOVAS-
C. This section also provides simple instructions for installing and checking the software. Section 3
provides a list and brief description of each NOVAS-C function. Section 4 gives detailed descriptions of a
few of the most frequently-called functions. Throughout this document, bold text will be used to refer to
file names and italic text will be used to refer to function or subroutine names. Variable names or code
snippets will be presented in a typewriter-like font.

Also, be aware that the U. S. Naval Observatory’s Astronomical Application Department maintains a
NOVAS page on the World Wide Web. It can be reached via the USNO home page
(http://www.usno.navy.mil).

http://www.usno.navy.mil

2. File Overview and Installation

The following files make up the NOVAS-C system:

File name Description

novas.c contains all supervisory and utility functions and most basic functions

novas.h header file for novas.c (includes structure definitions and function prototypes)

novascon.c contains most mathematical and physical constants used by the NOVAS-C system

novascon.h header file for novascon.c

solsys2d.c version of function solarsystem that serves as an interface between NOVAS-C and the JPL lunar
and planetary ephemerides (see detailed discussion in Section 4)

solsys3.c version of function solarsystem that provides the position and velocity of the Earth or Sun
without reference to an external data file (see detailed discussion in Section 4)

In addition, the following files are provided to assist in validating the installation of NOVAS-C on your
local system:

checkout.c main function that calls functions in novas.c and solsys3.c for the purpose of validating a local
installation

checkout.no output from the “checkout” application computed at USNO; compare this file with results
obtained from your local installation

To install NOVAS-C on your local system, do the following:

• Copy all NOVAS-C files to a directory on your local system.

• Compile and link files checkout.c, novas.c, novascon.c, and solsys3.c. Name the resulting
application “checkout”.

• Run the checkout application. Compare the results that you get (in the file checkout.out) with the
data in file checkout.no. If the results agree, the installation has probably been successful.

Important Note

The checkout application exercises one supervisory function and most, but not all, of the low-level
functions in novas.c. Also, the checkout application does not use solsys2d.c; hence, planetary positions
(other than those of the Earth) are not tested. Thus, use of the checkout application is not a complete test of
NOVAS-C. A more complete check of your NOVAS-C implementation can be made by comparing the
results from the NOVAS-C supervisory functions with results from the analogous NOVAS Fortran
supervisory functions.

3. Function Overview

The following functions are contained in file novas.c:

Entry name Level Purpose

app_star supervisory Computes the geocentric apparent place of a star, given its J2000.0 catalog mean place.

topo_star supervisory Computes the topocentric apparent place of a star, given its J2000.0 catalog mean place
and geographic location of observer.

app_planet supervisory Computes the geocentric apparent place of a planet or other solar system body.

topo_planet supervisory Computes the topocentric apparent place of a planet or other solar system body, given
geographic location of observer.

virtual_star supervisory Computes the “virtual place” of a star, given its J2000.0 catalog mean place.

local_star supervisory Computes the “local place” of a star, given its J2000.0 catalog mean place and
geographic location of observer.

virtual_planet supervisory Computes the “virtual place” of a planet or other solar system body.

local_planet supervisory Computes the “local place” of a planet or other solar system body, given geographic
location of observer.

astro_star supervisory Computes the astrometric place of a star, given its J2000.0 catalog mean place.

astro_planet supervisory Computes the astrometric place of a planet or other solar system body.

mean_star supervisory Computes the J2000.0 mean place of a star, given its apparent place.

sidereal_time supervisory Computes Greenwich sidereal time, either mean or apparent.

pnsw supervisory Transforms arbitrary vector in rotating Earth-fixed (geographic) system to space-fixed
(J2000.0) system.

get_earth utility Provides barycentric and heliocentric position and velocity of the Earth at a TDT date.

spin utility Rotates vector by angle equal to sidereal time.

wobble utility Adjusts Earth-fixed vector for polar motion.

proper_motion utility Updates the position vector of a star to allow for its space motion.

geocentric utility Changes origin of coordinates from barycenter of solar system to center of mass of
Earth.

aberration utility Adjusts position vector for aberration of light due to motion of Earth.

precession utility Applies precession to position vector.

nutate utility Applies nutation to position vector.

sun_field utility Adjusts position vector for deflection of light by Sun’s gravitational field.

terra utility Converts geographic coordinates to geocentric position vector.

vector2radec utility Converts position vector to RA and declination.

angle2vector utility Converts RA, declination, and distance to a position vector.

starvectors utility Converts RA, declination, proper motion, etc., to position and velocity vectors.

calc_nutation basic Evaluates nutation series.

earth_tilt basic Provides information on orientation of Earth’s axis: obliquity, nutation parameters, etc.

convert_tdb2tdt basic Converts Terrestrial Dynamical Time (TDT) to Barycentric Dynamical Time (TDB).

In order to compute instantaneous positions using the supervisory functions, NOVAS-C must have
access to a solar system ephemeris. The solar system ephemeris provides NOVAS-C with the heliocentric
and barycentric positions and velocities of desired solar system objects referred to the mean equator and
equinox of J2000.0. The solar system ephemeris is required even when only precise star positions are
needed – in that case, the “desired solar system object” is the Earth.

NOVAS-C accesses the ephemeris through a function called solarsystem. While this function has a
defined argument list, its inner workings can take any form depending upon the ephemeris that has been
selected for use. Users may write their own versions of solarsystem or use either of the two versions
provided with NOVAS-C:

• solsys2d.c serves as the interface between NOVAS-C and the JPL lunar and planetary ephemerides,
such as DE200 or DE403. This function contains a single call to JPL’s Fortran subroutine pleph, which in
turn calls other Fortran subroutines in the JPL ephemeris software package. The user must obtain the
Fortran ephemeris package from JPL, set up the binary, random-access ephemeris file, and link the
applicable JPL Fortran code with NOVAS-C. For more details, see the discussion of this version of
solarsystem in Section 4.

• solsys3.c provides the position and velocity of the Earth or Sun without reference to an external data
file. This version of solarsystem is ideally suited for computing coordinates of stars, with errors not
exceeding several milliarcseconds.

See the next section for additional information on function solarsystem and other frequently called
functions.

4. Important Functions in NOVAS-C

APP_STAR

short int app_star (double tjd, short int earth, fk5_entry *star,

 double *ra, double *dec)

 PURPOSE:
 Computes the apparent place of a star at date 'tjd', given its
 mean place, proper motion, parallax, and radial velocity for
 J2000.0.

 INPUT
 ARGUMENTS:
 tjd (double)
 TDT Julian date for apparent place.
 earth (short int)
 Body identification number for the Earth.
 *star (struct fk5_entry)
 Pointer to catalog entry structure (defined in novas.h).

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Apparent right ascension in hours, referred to true equator
 and equinox of date 'tjd'.
 *dec (double)
 Apparent declination in degrees, referred to true equator
 and equinox of date 'tjd'.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 >0...Error code from function 'solarsystem'.

Discussion:

This function computes the apparent place of a star. The word “star” as used here refers to any object
outside the solar system. If the values of promora, promodec, parlax, or radvel within structure
star are unknown (or zero within the errors of measurement), the calling program should set them to
zero. For extragalactic objects, these input values should be set to zero. The user’s choice of the version of
function solarsystem determines the value of the argument earth that the calling program must supply to
app_star.

 The input mean place at standard epoch J2000.0 is assumed to be the true mean place, similar to the
mean places in the FK5, and not contain the so-called “E-terms”.

Efficiency is maximized when successive calls to app_star have the same value for tjd, since some
quantities which are functions only of time are thereby saved and reused.

TOPO_STAR

short int topo_star (double tjd, short int earth, double deltat,
 fk5_entry *star, site_info *location,

 double *ra, double *dec)

 PURPOSE:
 Computes the topocentric place of a star at date 'tjd', given its
 mean place, proper motion, parallax, and radial velocity for
 J2000.0 and the location of the observer.

 INPUT
 ARGUMENTS:
 tjd (double)
 TDT Julian date for topocentric place.
 earth (short int)
 Body identification number for the Earth.
 deltat (double)
 Difference TDT-UT1 at 'tjd', in seconds.
 *star (struct fk5_entry)
 Pointer to catalog entry structure (defined in novas.h).
 *location (struct site_info)
 Pointer to structure containing observer's location (defined
 in novas.h).

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Topocentric right ascension in hours, referred to true equator
 and equinox of date 'tjd'.
 *dec (double)
 Topocentric declination in degrees, referred to true equator
 and equinox of date 'tjd'.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 >0...Error code from function 'solarsystem'.

Discussion:

This function computes the topocentric place of a star (neglecting atmospheric refraction) for the

location specified by the argument location, for the time specified by the argument tjd. Note that tjd
is the TDT time at which the topocentric place is to be computed. The word “star” as used here refers to
any object outside the solar system. If the values of promora, promodec, parlax, or radvel within
structure star are unknown (or zero within the errors of measurement), the calling program should set
them to zero. For extragalactic objects, these input values should be set to zero. The difference TDT–UT1
(often called ∆T) is passed to the function via argument deltat. Values of ∆T are published in the annual
Astronomical Almanac or can be obtained from the National Earth Orientation Service (NEOS) home page
on the World Wide Web (http://maia.usno.navy.mil/). The user’s choice of the version of function
solarsystem determines the value of the argument earth that the calling program must supply to
app_star.

The input mean place at standard epoch J2000.0 is assumed to be the true mean place, similar to the
mean places in the FK5, and not contain the so-called “E-terms”.

http://maia.usno.navy.mil/

APP_PLANET

short int app_planet (double tjd, short int planet, short int earth,

 double *ra, double *dec, double *dis)

 PURPOSE:
 Compute the apparent place of a planet or other solar system body.

 INPUT
 ARGUMENTS:
 tjd (double)
 TDT Julian date for apparent place.
 planet (short int)
 Body identification number for desired planet.
 earth (short int)
 Body identification number for the Earth.

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Apparent right ascension in hours, referred to true equator
 and equinox of date 'tjd'.
 *dec (double)
 Apparent declination in degrees, referred to true equator
 and equinox of date 'tjd'.
 *dis (double)
 True distance from Earth to planet at 'tjd' in AU.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 >0...Error code from function 'solarsystem'.

Discussion:

This function computes the apparent place of a planet or other solar system body by calling function
solarsystem to obtain its rectangular coordinates, along with those of the Earth. Other utility- and basic-
level functions are also called. The user’s choice of the version of solarsystem to be used determines the
values of the arguments planet and earth, which identify the planet and the Earth, respectively. The
source of the rectangular coordinates is, of course, also determined by the version of solarsystem in use.

Efficiency is maximized when successive calls to app_planet have the same value for tjd, since some
quantities which are functions only of time are thereby saved and reused.

TOPO_PLANET

short int topo_planet (double tjd, short int planet, short int earth,
 double deltat, site_info *location,

 double *ra, double *dec, double *dis)

 PURPOSE:
 Computes the topocentric place of a planet, given the location of
 the observer.

 INPUT
 ARGUMENTS:
 tjd (double)
 TDT Julian date for topocentric place.
 planet (short int)
 Body identification number for desired planet.
 earth (short int)
 Body identification number for the Earth.
 deltat (double)
 Difference TDT-UT1 at 'tjd', in seconds.
 *location (struct site_info)
 Pointer to structure containing observer's location (defined
 in novas.h).

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Topocentric right ascension in hours, referred to true
 equator and equinox of date 'tjd'.
 *dec (double)
 Topocentric declination in degrees, referred to true equator
 and equinox of date 'tjd'.
 *dis (double)
 True distance from observer to planet at 'tjd' in AU.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 >0...Error code from function 'solarsystem'.

Discussion:

This function computes the topocentric place of a planet or other solar system body (neglecting
atmospheric refraction) for the location specified by the argument location, for the time specified by the
argument tjd. Note that tjd is the TDT time at which the topocentric place is to be computed. The
difference TDT–UT1 (often called ∆T) is passed to the function via argument deltat. Values of ∆T are
published in the annual Astronomical Almanac or can be obtained from the National Earth Orientation
Service (NEOS) home page on the World Wide Web (http://maia.usno.navy.mil/). The user’s choice of
the version of solarsystem determines the values of the arguments planet and earth, which identify the
planet and the Earth, respectively. The source of the rectangular coordinates is, of course, also determined
by the version of solarsystem in use.

http://maia.usno.navy.mil/

VIRTUAL_STAR

short int virtual_star (double tjd, short int earth, fk5_entry *star,

 double *ra, double *dec)

 PURPOSE:
 Computes the virtual place of a star at date 'tjd', given its
 mean place, proper motion, parallax, and radial velocity for
 J2000.0.

 INPUT
 ARGUMENTS:
 tjd (double)
 TDT Julian date for virtual place.
 earth (short int)
 Body identification number for the earth.
 *star (struct fk5_entry)
 Pointer to catalog entry structure (defined in novas.h).

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Virtual right ascension in hours, referred to mean equator
 and equinox of J2000.
 *dec (double)
 Virtual declination in degrees, referred to mean equator
 and equinox of J2000.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 >0...Error code from function 'solarsystem'.

Discussion:

See the discussion for function app_star. Function virtual_star is identical to app_star in input
arguments and use. Here, however, the output arguments provide the virtual place of the star. The virtual
place is essentially the apparent place expressed in the coordinate system of standard epoch J2000.0.

LOCAL_STAR

short int local_star (double tjd, short int earth, double deltat,
 fk5_entry *star, site_info *location,

 double *ra, double *dec)

 PURPOSE:
 Computes the local place of a star, given its mean place, proper
 motion, parallax, and radial velocity for J2000.0, and the
 location of the observer.

 INPUT
 ARGUMENTS:
 tjd (double)
 TDT Julian date for local place.
 earth (short int)
 Body identification number for the Earth.
 deltat (double)
 Difference TDT-UT1 at 'tjd', in seconds.
 *star (struct fk5_entry)
 Pointer to catalog entry structure (defined in novas.h).
 *location (struct site_info)
 Pointer to structure containing observer's location (defined
 in novas.h).

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Local right ascension in hours, referred to mean equator and
 equinox of J2000.
 *dec (double)
 Local declination in degrees, referred to mean equator and
 equinox of J2000.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 >0...Error code from function 'solarsystem'.

Discussion:

See the discussion for function topo_star. Function local_star is identical to topo_star in input
arguments and use. The local place is essentially the topocentric place expressed in the coordinate system
of standard epoch J2000.0.

VIRTUAL_PLANET

short int virtual_planet (double tjd, short int planet, short int earth,

 double *ra, double *dec, double *dis)

 PURPOSE:
 Computes the virtual place of a planet or other solar system body.

 INPUT
 ARGUMENTS:
 tjd (double)
 TDT Julian date for virtual place.
 earth (short int)
 Body identification number for the Earth.
 planet (short int)
 Body identification number for desired planet.

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Virtual right ascension in hours, referred to mean equator
 and equinox of J2000.
 *dec (double)
 Virtual declination in degrees, referred to mean equator
 and equinox of J2000.
 *dis (double)
 True distance from Earth to planet in AU.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 >0...Error code from function 'solarsystem'.

Discussion:

See the discussion for function app_planet. Function virtual_planet is identical to app_planet in input
arguments and use. Here, however, the output arguments provide the virtual place of the planet. The virtual
place is essentially the apparent place expressed in the coordinate system of standard epoch J2000.0.

LOCAL_PLANET

short int local_planet (double tjd, short int planet, short int earth,
 double deltat, site_info *location,

 double *ra, double *dec, double *dis)

 PURPOSE:
 Computes the local place of a planet or other solar system body,
 given the location of the observer.

 INPUT
 ARGUMENTS:
 tjd (double)
 TDT Julian date for local place.
 earth (short int)
 Body identification number for the Earth.
 planet (short int)
 Body identification number for desired planet.
 deltat (double)
 Difference TDT-UT1 at 'tjd', in seconds.
 *location (struct site_info)
 Pointer to structure containing observer's location (defined
 in novas.h).

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Local right ascension in hours, referred to mean equator and
 equinox of J2000.
 *dec (double)
 Local declination in degrees, referred to mean equator and
 equinox of J2000.
 *dis (double)
 True distance from Earth to planet in AU.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 >0...Error code from function 'solarsystem'.

Discussion:

See the discussion for function topo_planet. Subroutine local_planet is identical to topo_planet in

input arguments and use. The local place is essentially the topocentric place expressed in the coordinate
system of standard epoch J2000.0.

ASTRO_STAR

short int astro_star (double tjd, short int earth, fk5_entry *star,

 double *ra, double *dec)

 PURPOSE:
 Computes the astrometric place of a star, given its mean place,
 proper motion, parallax, and radial velocity for J2000.0.

 INPUT
 ARGUMENTS:
 tjd (double)
 TDT Julian date for astrometric place.
 earth (short int)
 Body identification number for the Earth.
 *star (struct fk5_entry)
 Pointer to catalog entry structure (defined in novas.h).

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Astrometric right ascension in hours, referred to mean equator
 and equinox of J2000.
 *dec (double)
 Astrometric declination in degrees, referred to mean equator
 and equinox of J2000.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 >0...Error code from function 'solarsystem'.

Discussion:

See the discussion for function app_star. Function astro_star is identical to app_star in input

arguments and use. Here, however, the output arguments provide the astrometric place of the star.

ASTRO_PLANET

short int astro_planet (double tjd, short int planet, short int earth,

 double *ra, double *dec, double *dis)

 PURPOSE:
 Computes the astrometric place of a planet or other solar system
 body.

 INPUT
 ARGUMENTS:
 tjd (double)
 TDT Julian date for calculation.
 planet (short int)
 Body identification number for desired planet.
 earth (short int)
 Body identification number for the Earth.

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Astrometric right ascension in hours, referred to mean equator
 and equinox of J2000.
 *dec (double)
 Astrometric declination in degrees, referred to mean equator
 and equinox of J2000.
 *dis (double)
 True distance from Earth to planet in AU.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 >0...Error code from function 'solarsystem'.

Discussion:

See the discussion for function app_planet. Function astro_planet is identical to app_planet in input

arguments and use. Here, however, the output arguments provide the astrometric place of the planet.

 SIDEREAL_TIME

void sidereal_time (double julianhi, double julianlo, double ee,

 double *gst)

 PURPOSE:
 Computes the Greenwich apparent sidereal time, at Julian date
 'julianhi' + 'julianlo'.

 INPUT
 ARGUMENTS:
 julianhi (double)
 Julian date, integral part.
 julianlo (double)
 Julian date, fractional part.
 ee (double)
 Equation of the equinoxes (seconds of time)

 OUTPUT
 ARGUMENTS:
 *gst (double)
 Greenwich apparent sidereal time, in hours.

 RETURNED
 VALUE:
 None.

Discussion:

This function computes Greenwich sidereal time. To obtain the Greenwich mean sidereal time, set

input argument ee = 0.0. To obtain Greenwich apparent sidereal time, supply the correct value for the
equation of the equinoxes (ee) which can be computed by calling function earthtilt.

The input Julian date may be split into two parts to ensure maximum precision in the computation. For
maximum precision, julianhi should be set to be equal to the integral part of the Julian date, and
julianlo should be set to be equal to the fractional part. For most applications the position of the split
is not critical as long as the sum julianhi + julianlo is correct: for example, when used with
computers providing 16 decimal digits of precision in double variables, this function will yield values of
gst precise to better than 1 millisecond even if julianhi contains the entire Julian date and julianlo
is set to 0.0.

For most uses, the input Julian date should be in the UT1 time scale. If the input Julian date is in the
TDB time scale, the output must be considered to be ‘dynamical’ sidereal time.

PRECESSION

short int precession (double tjd1, double *pos, double tjd2,

 double *pos2)

 PURPOSE:
 Precesses equatorial rectangular coordinates from one epoch to
 another. The coordinates are referred to the mean equator and
 equinox of the two respective epochs.

 INPUT
 ARGUMENTS:
 tjd1 (double)
 TDB Julian date of first epoch.
 pos[3] (double)
 Position vector, geocentric equatorial rectangular coordinates,
 referred to mean equator and equinox of first epoch.
 tjd2 (double)
 TDB Julian date of second epoch.

 OUTPUT
 ARGUMENTS:
 pos2[3] (double)
 Position vector, geocentric equatorial rectangular coordinates,
 referred to mean equator and equinox of second epoch.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.

Discussion:

This function precesses a position vector pos1 from the equatorial rectangular system of epoch tjd1

to the equatorial rectangular system of epoch tjd2; the resulting vector is pos2. The two epochs are
completely arbitrary and the transformation is reversible. In typical usage, one of the two epochs will be
standard epoch J2000.0, that is, either tjd1 or tjd2 will be 2451545.0.

EARTHTILT

void earthtilt (double tjd,

 double *mobl, double *tobl, double *eq, double *dpsi,
 double *deps)

 PURPOSE:
 Computes quantities related to the orientation of the Earth's
 rotation axis at Julian date 'tjd'.

 INPUT
 ARGUMENTS:
 tjd (double)
 TDB Julian date of the desired time

 OUTPUT
 ARGUMENTS:
 *mobl (double)
 Mean obliquity of the ecliptic in degrees at 'tjd'.
 *tobl (double)
 True obliquity of the ecliptic in degrees at 'tjd'.
 *eq (double)
 Equation of the equinoxes in seconds of time at 'tjd'.
 *dpsi (double)
 Nutation in longitude in seconds of arc at 'tjd'.
 *deps (double)
 Nutation in obliquity in seconds of arc at 'tjd'.

 RETURNED
 VALUE:
 None.

Discussion:

This function computes various quantities related to the orientation of the Earth’s rotation axis in

inertial space at a specific time. The computation involves a call to function calcnutation to evaluate the
nutation series.

SOLARSYSTEM

 short int solarsystem (double tjd, short int body, short int origin,

 double *pos, double *vel)

 PURPOSE:
 Provides the position and velocity vectors of a planet or other
 solar system body at a specific time. The origin of coordinates
 may be either the barycenter of the solar system or the center
 of mass of the Sun.

 INPUT
 ARGUMENTS:
 tjd (double)
 TDB Julian date.
 body (short int)
 Body identification number for the solar system object of
 interest; Mercury = 1,...,Pluto = 9, Sun = 10, Moon = 11.
 origin (short int)
 Origin code; solar system barycenter = 0,
 center of mass of the Sun = 1.

 OUTPUT
 ARGUMENTS:
 pos[3] (double)
 Position vector of 'body' at tjd; equatorial rectangular
 coordinates in AU referred to the mean equator and equinox
 of J2000.0.
 vel[3] (double)
 Velocity vector of 'body' at tjd; equatorial rectangular
 system referred to the mean equator and equinox of J2000.0,
 in AU/Day.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 Other values depend upon version in use

Discussion:
This subroutine supplies values for the components of the position vector pos and velocity vector vel

for body body at time tjd. The vectors computed by solarsystem are in the equatorial rectangular
coordinate system which is oriented to the mean equator and equinox of standard epoch J2000.0. The
vectors are barycentric if origin=0 and heliocentric if origin=1.

There are two different versions of solarsystem supplied in NOVAS-C, each with its own internal
logic. One uses internally-stored data or series expansions, the other refers to external data files.
Additional documentation is provided on the following pages for the proper use of each version. The user
is free to supply alternative versions, providing that the arguments conform to the above specifications.

The values of the body identification number, body, will in general differ from one solarsystem
version to another; consult the documentation for the specific version in use. Usually, body=1 refers to
Mercury, body=2 refers to Venus, body=3 refers to the Earth, etc., but the identification numbers for
bodies such as the Sun or Moon vary. Furthermore, some versions of solarsystem support only a subset
of the major solar system bodies. The minimum requirement is support for the Earth. It is also
sometimes necessary to distinguish between the Earth and the Earth/Moon barycenter; for computing
quantities related to observables (e.g., apparent, topocentric, or astrometric places) it is the position and
velocity of the Earth that is required.

SOLARSYSTEM, Version 2D

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 1...Invalid value of body or origin.
 2...Error detected by JPL software.

Discussion

This version serves as the interface between the Jet Propulsion Laboratory’s lunar and planetary
ephemeris software and NOVAS-C. The function contains a single call to JPL’s Fortran subroutine pleph,
which in turn calls other Fortran subroutines in the JPL ephemeris software package. The user is
responsible for obtaining the Fortran ephemeris package from JPL, setting up the binary, random-access
ephemeris file, and linking the JPL Fortran with NOVAS-C. See the Implementation Notes below.

The body identification numbers to be used with this version are: Sun, body=10; Mercury, body=1;
Venus, body=2; Earth, body=3; Mars, body=4; Jupiter, body=5; Saturn, body=6; Uranus, body=7;
Neptune, body=8; Pluto, body=9; Moon, body=11.

Implementation Notes

In order to use NOVAS-C with solarsystem version 2D, you must first obtain the export planetary
ephemeris package from JPL. Be sure to choose an ephemeris whose coordinates are oriented to the mean
equator and equinox of standard epoch J2000.0, such as DE200 or DE403. The export package is
available over the Internet from the anonymous ftp server navigator.jpl.nasa.gov/ephem/export and consists
of several large ASCII data files and software provided in the form of Fortran source code. An installation
guide is also included. The installation process consists of converting the (large) file of ASCII ephemeris
data to binary, direct-access form using a supplied utility program. Then, the binary file is verified using
another utility program and a file of comparison data. If the verification process is successful, the
ephemeris file is ready to use. The ephemeris data is obtained from the binary file by calling the access
subroutines provided in the export package.

Important Note
Over the years, there have been several versions of the JPL export ephemeris software. The following

discussion specifically refers to the software version documented in “The JPL Export Planetary
Ephemeris”, 29 June 1990 revision 1, by E. M. Standish and X X Newhall of JPL. Use of solarsystem
version 2D with other versions of the JPL software will require minor modifications to the solarsystem
source code.

Version 2D of solarsystem (in C) obtains ephemeris data from the binary file by calling JPL
subroutine pleph (in Fortran). The C function has a few features that make it possible for it to exchange
data with the Fortran subroutine. First, all of the arguments of the call to pleph in the function are
addresses, since Fortran uses call by address instead of call by value, for arguments of subroutines.
Second, all of the integer arguments in the call are designated as type long int in the C function in an
attempt to match the Fortran INTEGER default. Finally, the “alternate return” asterisk argument (last item
in the pleph argument list) is designated as a long int in the C function; the returned value is used as an
error flag. The DOUBLE PRECISION arguments in the subroutine are designated as type double in the
C function.

Probably the biggest hurdle in implementing version 2D of solarsystem will involve the proper
compiling and linking of the mixed-language files. The procedures will be specific to your computing
platform; therefore, you will have to consult your compiler manual for detailed instructions. The following

ftp://navigator.jpl.nasa.gov/ephem/export

instructions are offered only as a guideline – they provides a specific example of how the mixed-language
files were handled successfully on an IBM RISC System 6000 Unix workstation.

1. Create a single file with all of the JPL Fortran ephemeris access subroutines. Name it
jplsubs.f.

2. Compile the Fortran file without invoking the linkage editor. This creates the object file
jplsubs.o. The Fortran compiler/linker is xlf.

xlf -c jplsubs.f

3. Compile, again without invoking the linkage editor, the C files novas.c, novascon.c,
solsys2d.c. This creates the object files novas.o, novascon.o, solsys2d.o:

xlc -c -lm novas.c novascon.c solsys2d.c

The C compiler/linker is xlc. The -lm option specifically searches the math library.

4. Finally, compile the main function and link it with the object files:

create executable named "app"

search the C math library

search the Fortran
libraries (xlf90)

main function

object files

search in this directory
for -l libraries

xlc -L/usr/lib -lm -lxlf90 -o app main.c novas.o novascon.o solsys2d.o jplsubs.o

In this example, the resulting executable file is named “app.” Note especially the use of the -l
option to force the C compiler/linker to search the Fortran libraries for unresolved references.

Important Note
It is strongly recommended that results obtained from your specific implementation of NOVAS-C

and solarsystem version 2D be checked by comparing to corresponding values published in the
Astronomical Almanac, or by comparing to results obtained from the Fortran version of NOVAS using
subroutine SOLSYS version 2-DA.

SOLARSYSTEM, Version 3

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 1...Input Julian date ('tjd') out of range.
 2...Invalid value of 'body'.

Discussion:

This version of solarsystem provides the position and velocity of the Earth or Sun without reference to
any external data file. The heliocentric position and velocity of the Earth are computed by evaluating
trigonometric series. When barycentric positions and velocities are required, a number of somewhat crude
approximations are involved; therefore, barycentric positions and velocities computed by this version of
SOLSYS are less accurate than heliocentric positions and velocities. The resulting errors should be less
than the following values:

Maximum error in heliocentric positions: 6 × 10-6 AU
Maximum error in heliocentric velocities: 8 × 10-7 AU/day
Maximum error in barycentric positions: 8 × 10-4 AU
Maximum error in barycentric velocities: 2 × 10-6 AU/day

When this version of solarsystem is used in the computation of the apparent place of the Sun, it should

contribute less than 2 arcseconds error. When this version of solarsystem is used in the computation of
apparent places of stars, it should contribute less than 2 milliarcseconds error.

The above error assessment applies to the interval 1800–2050.

Note: This version of solarsystem calls several other functions in the NOVAS-C package.

The body identification numbers to be used with this version are: Sun, body=0, body=1, or
body=10; Earth, body=2 or body=3.

Acknowledgements

Thomas K. Buchanan, working as part of the U.S. Naval Observatory/Naval Research Laboratory
Optical Interferometer team, did the initial conversion of many of the NOVAS Fortran subroutines to C.

David Buscher, James Hilton, Christian Hummel, and Sandra Martinka, users of preliminary versions
of the NOVAS-C package, provided valuable comments and suggestions.

	Title Page
	1. Introduction
	2. File Overview and Installation
	3. Function Overview
	4. Important Functions
	Acknowledgements

